Каталог
>
Знания и навыки
>
Компьютерная литература
>
Программы
>
9781119507390
Каталог
:: Java книги
:: Авто
:: Астрология
:: Аудио книги
:: Биографии и Мемуары
:: В мире животных
:: Гуманитарные и общественные науки
:: Детские книги
:: Для взрослых
:: Для детей
:: Дом, дача
:: Журналы
:: Зарубежная литература
:: Знания и навыки
:Бизнес-книги
:Компьютерная литература
:Базы данных
:Зарубежная компьютерная литература
:Интернет
:Информационная безопасность
:Книги о компьютерах
:Компьютерное железо
:Ос и сети
:Программирование
:Программы
:Научно-популярная литература
:Словари, справочники
:Учебная и научная литература
:: Издательские решения
:: Искусство
:: История
:: Компьютеры
:: Кулинария
:: Культура
:: Легкое чтение
:: Медицина и человек
:: Менеджмент
:: Наука и образование
:: Оружие
:: Программирование
:: Психология
:: Психология, мотивация
:: Публицистика и периодические издания
:: Разное
:: Религия
:: Родителям
:: Серьезное чтение
:: Спорт
:: Спорт, здоровье, красота
:: Справочники
:: Техника и конструкции
:: Учебная и научная литература
:: Фен-Шуй
:: Философия
:: Хобби, досуг
:: Художественная лит-ра
:: Эзотерика
:: Экономика и финансы
:: Энциклопедии
:: Юриспруденция и право
:: Языки
Новинки
Dodge Dakota с 1995 по 2000 год, электрооборудование и электросхемы в электронном виде (на английском языке)
Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design
Автор:
Nan Zheng
Издательство:
John Wiley & Sons Limited
Cтраниц:
1
Формат:
PDF
Размер:
0
ISBN:
9781119507390
Качество:
excellent
Язык:
Описание:
Explains current co-design and co-optimization methodologies for building hardware neural networks and algorithms for machine learning applications This book focuses on how to build energy-efficient hardware for neural networks with learning capabilities—and provides co-design and co-optimization methodologies for building hardware neural networks that can learn. Presenting a complete picture from high-level algorithm to low-level implementation details, Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design also covers many fundamentals and essentials in neural networks (e. g. , deep learning), as well as hardware implementation of neural networks. The book begins with an overview of neural networks. It then discusses algorithms for utilizing and training rate-based artificial neural networks. Next comes an introduction to various options for executing neural networks, ranging from general-purpose processors to specialized hardware, from digital accelerator to analog accelerator. A design example on building energy-efficient accelerator for adaptive dynamic programming with neural networks is also presented. An examination of fundamental concepts and popular learning algorithms for spiking neural networks follows that, along with a look at the hardware for spiking neural networks. Then comes a chapter offering readers three design examples (two of which are based on conventional CMOS, and one on emerging nanotechnology) to implement the learning algorithm found in the previous chapter. The book concludes with an outlook on the future of neural network hardware. Includes cross-layer survey of hardware accelerators for neuromorphic algorithms Covers the co-design of architecture and algorithms with emerging devices for much-improved computing efficiency Focuses on the co-design of algorithms and hardware, which is especially critical for using emerging devices, such as traditional memristors or diffusive memristors, for neuromorphic computing Learning in Energy-Efficient Neuromorphic Computing: Algorithm and Architecture Co-Design is an ideal resource for researchers, scientists, software engineers, and hardware engineers dealing with the ever-increasing requirement on power consumption and response time. It is also excellent for teaching and training undergraduate and graduate students about the latest generation neural networks with powerful learning capabilities.
Скачать
Скачать легальную копию
Просмотров: 77
Пресс - релиз
string(4) "true" int(290)
К настоящему времени нет отзывов!
Рекомендуем
Секреты уличных знакомств
Информация
Свяжитесь с нами
Как скачать и чем читать
Quiero dinero © 2007