From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive ...
With the second edition of his highly successful textbook 'Nanophysics and Nanotechnology', the author has once more provided a unique, self-contained introduction to the physical concepts, techniques and applications of nanoscale systems by covering its entire spectrum from the latest examples right up to single-electron and molecular electronics. The book is basically at the level of an upper level undergraduate engineering or science student. ...
Materials scientists are often faced with the problem of modifying surfaces of objects, yet keeping their shape and properties. This book provides a detailed survey on the new technology of adsorption from solution for the fabrication of molecularly ordered multicomposite films in order to replace and expand on the well known Langmuir-Blodgett technology and to open the field of molecular self-assembly to materials and biosciences. The book is a ...
Providing students as well as engineers and researchers with a must-have insight into the complexities of surface structure and behavior, this monograph extends beyond the usual introductory books, presenting concentrated knowledge on the surface science of metals, and connecting fundamentals with actual applications. Beginning with explanations of the intricacies of surfaces and their differences to bulk, it takes the reader through the vital s ...
This handbook is an excellent reference for materials scientists and engineers needing to gain more knowledge about these engineering materials. Following introductory chapters on the fundamental materials properties of titanium, readers will find comprehensive descriptions of the development, processing and properties of modern titanium alloys. There then follows detailed discussion of the applications of titanium and its alloys in aerospace, m ...
Using microwaves to treat metal-based materials is rapidly emerging as an energy-efficient tool to interact with metals for a number of processes such as sintering, melting, brazing, carburizing and annealing. Microwaves can sinter a wide variety of metal compacts with comparable or enhanced end properties, while at the same time delivering tremendous energy savings over conventional sintering. Microwave processes are therefore gaining increasin ...
The production of high-purity ceramic materials from low-molecular weight, inorganic or organoelement precursors is a topic of increasing relevance within materials science. With this emerging technology it is possible to precisely tailor the properties of the ceramic material which enables new high-temperature or electronic applications. Every materials scientist and engineer involved in the research and development of new high-performance cera ...
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coati ...
This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coati ...