TakeBooks.com TakeBooks.com TakeBooks.com
TakeBooks.com
TakeBooks.com
  Каталог> Знания и навыки> Компьютерная литература>

Базы данных

> 9781608452859
TakeBooks.com
TakeBooks.com
 Каталог
:: Java книги
:: Авто
:: Астрология
:: Аудио книги
:: Биографии и Мемуары
:: В мире животных
:: Гуманитарные и общественные науки
:: Детские книги
:: Для взрослых
:: Для детей
:: Дом, дача
:: Журналы
:: Зарубежная литература
:: Знания и навыки
   :Бизнес-книги
   :Компьютерная литература
     :Базы данных
     :Зарубежная компьютерная литература
     :Интернет
     :Информационная безопасность
     :Книги о компьютерах
     :Компьютерное железо
     :Ос и сети
     :Программирование
     :Программы
   :Научно-популярная литература
   :Словари, справочники
   :Учебная и научная литература
:: Издательские решения
:: Искусство
:: История
:: Компьютеры
:: Кулинария
:: Культура
:: Легкое чтение
:: Медицина и человек
:: Менеджмент
:: Наука и образование
:: Оружие
:: Программирование
:: Психология
:: Психология, мотивация
:: Публицистика и периодические издания
:: Разное
:: Религия
:: Родителям
:: Серьезное чтение
:: Спорт
:: Спорт, здоровье, красота
:: Справочники
:: Техника и конструкции
:: Учебная и научная литература
:: Фен-Шуй
:: Философия
:: Хобби, досуг
:: Художественная лит-ра
:: Эзотерика
:: Экономика и финансы
:: Энциклопедии
:: Юриспруденция и право
:: Языки
 Рекомендуем
Секреты уличных знакомств
Секреты уличных знакомств
 Новинки
The Unforgettable Spanish Tycoon
The Unforgettable Spanish Tycoon
 
 

Ensemble Methods in Data Mining

Ensemble Methods in Data Mining
Автор: John Elder
Издательство: Ingram
Cтраниц: 1
Формат: EPUB
Размер: 0
ISBN: 9781608452859
Язык: 
Описание:
Ensemble methods have been called the most influential development in Data Mining and Machine Learning in the past decade. They combine multiple models into one usually more accurate than the best of its components. Ensembles can provide a critical boost to industrial challenges – from investment timing to drug discovery, and fraud detection to recommendation systems – where predictive accuracy is more vital than model interpretability. Ensembles are useful with all modeling algorithms, but this book focuses on decision trees to explain them most clearly. After describing trees and their strengths and weaknesses, the authors provide an overview of regularization – today understood to be a key reason for the superior performance of modern ensembling algorithms. The book continues with a clear description of two recent developments: Importance Sampling (IS) and Rule Ensembles (RE). IS reveals classic ensemble methods – bagging, random forests, and boosting – to be special cases of a single algorithm, thereby showing how to improve their accuracy and speed. REs are linear rule models derived from decision tree ensembles. They are the most interpretable version of ensembles, which is essential to applications such as credit scoring and fault diagnosis. Lastly, the authors explain the paradox of how ensembles achieve greater accuracy on new data despite their (apparently much greater) complexity.


This book is aimed at novice and advanced analytic researchers and practitioners – especially in Engineering, Statistics, and Computer Science. Those with little exposure to ensembles will learn why and how to employ this breakthrough method, and advanced practitioners will gain insight into building even more powerful models. Throughout, snippets of code in R are provided to illustrate the algorithms described and to encourage the reader to try the techniques.


The authors are industry experts in data mining and machine learning who are also adjunct professors and popular speakers. Although early pioneers in discovering and using ensembles, they here distill and clarify the recent groundbreaking work of leading academics (such as Jerome Friedman) to bring the benefits of ensembles to practitioners.


Table of Contents: Ensembles Discovered / Predictive Learning and Decision Trees / Model Complexity, Model Selection and Regularization / Importance Sampling and the Classic Ensemble Methods / Rule Ensembles and Interpretation Statistics / Ensemble Complexity




Просмотров: 2

Пресс - релиз

Последние отзывы:
К настоящему времени нет отзывов!
Написать отзыв
Вход 
Если Вы забыли пароль, щелкните здесь





Вы новый клиент?
Зарегистрируйтесь
 
 Информация 
Свяжитесь с нами
Как скачать и чем читать
  Quiero dinero © 2007